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Lacking a drug or vaccine, the current strategy to contain the COVID-19

pandemic is by means of social distancing, specifically mobility restrictions and

lock-downs. Such measures impose a hurtful toll on the economy, and are difficult

to sustain for extended periods. The challenge is that selective isolation of the

symptomatic patients is insufficient to control SARS-CoV-2, due to its relatively

long incubation period, in which individuals experience no symptoms, but may

already contribute to the spread. How then do we isolate these invisible pre-

symptomatic spreaders? Here we propose an alternating quarantine strategy, in

which at every instance, half of the population remains under lock-down while

the other half continues to be active, maintaining a routine of weekly succession

between activity and quarantine. Under this regime, if an individual was exposed

during their active week, by the time they complete their quarantine they will, in

most cases, begin to exhibit symptoms. Hence this strategy isolates the majority

of pre-symptomatic individuals during their infectious phase, leading to a rapid

decline in the viral spread - all while sustaining a continuously active economy

at 50% capacity.

Battling the spread of SARS-CoV-2, most countries have resorted to social distancing policies,

imposing restrictions [1], from complete lock-downs, to severe mobility constraints [2–5], gravely

impacting socioeconomic stability and growth. Most current projections on COVID-19 indicate

that such policies must be put in place for extended periods (typically months) to avoid reemergence

of the epidemic once lifted [6, 7]. This, however, may be unsustainable, as individual social and

economic needs will, at some point surpass the perceived risk of the pandemic.

The challenge is that while we isolate the symptomatic patients, exposed individuals become in-

fectious a few days prior to the onset of symptoms [8–13] (Fig. 1a). During this pre-symptomatic

stage, they behave as invisible spreaders, who continue to interact with their network, unaware of

their potential infectiousness. To address this we propose an alternating quarantine (AQ) strategy,

based on two principals: (i) Complete isolation of all symptomatic individuals, as already practiced

at present [1]; (ii) Partitioning of the remaining population into two cohorts that undergo weekly

successions of quarantine and routine activity. Other periodic cycles, e.g., bi-weekly, or 5 working



2

days vs. 9 quarantine days, may also be considered. The partition must be at household level,

guaranteeing all cohabitants are in the same cohort. Hence while Cohort 1 remains active, Cohort

2 stays at home and vice versa, ensuring little interaction between the cohorts (Fig. 1d). This

provides a highly efficient mitigation, alongside continuous socio-economic productivity, in which

half of the workforce remains active at each point in time.

The AQ strategy limits social mixing [14], while providing an outlet for people to sustain their

economic and social routines. At the same time it treats one of the main obstacles for COVID-

19 mitigation - the prevalence of invisible spreaders. To illustrate this consider an individual in

Cohort 1 who was active during week 1, and therefore might have been infected. This individual

will soon enter their pre-symptomatic stage, precisely the stage in which they are invisible, and

hence contribute most to the spread. However, according to the AQ routine, they will be confined to

their homes during week 2, and consequently, they will be isolated precisely during their suspected

pre-symptomatic period. If, by the end of week 2 they continue to show no symptoms, most

chances are that they are, in fact, healthy, and can, therefore, resume activity in week 3 according

to the planned routine. Conversely, if they do develop symptoms during their quarantine, they

must remain in isolation, similar to all symptomatic individuals. Hence, the weekly succession is

in resonance with the natural SARS-CoV-2 disease cycle [15], and in practice, leads to isolation of

the majority of invisible spreaders. If implemented fully, it guarantees, in each bi-weekly cycle, to

prune out the infectious individuals and sustain an active workforce comprising a predominantly

uninfected population.

Potential challenges

We identify four potential obstacles in AQ that we address below:

Variability. While the SARS-CoV-2 disease cycle is well-mapped, as appears in Fig. 1a, there

is a significant level of variability across the population. Specifically, the pre-symptomatic stage

may, at times, last longer than the average 5 days, with reported instances of up to two weeks

[10–13, 16–19]. Such late onset of symptoms may lead to pre-symptomatic spreaders that were not

screened during their quarantine week, resulting in a potential leakage of infectious individuals into

the active cohort. Therefore, in our modeling of the disease, we incorporated such variability in

individual transition times between states, congruent with empirically observed levels of individual

heterogeneity (Fig. 1c)

Asymptomatic patients. An estimated 30% of infected individuals do not experience noticeable

symptoms but may still shed the virus and be infectious [20–27]. Such asymptomatic spreaders

are overlooked by our AQ strategy, potentially resuming activity in the end of their quarantine

shift. Fortunately, lacking symptoms, such as coughing, which promotes virus shedding and dis-

semination, these asymptomatic individuals are likely less infectious than their symptomatic peers.

Furthermore, asymptomatic individuals could very well have lower viral load in their respiratory

tract and saliva [28–31]. Therefore, their impact on the SARS-CoV-2 transmission is likely reduced.

Despite that, to err on the side of safety, in our modeling of the spread we use a uniform infection

rate, for all individuals - symptomatic or asymptomatic - testing AQ under potentially challenging

assumptions.

Conformity. AQ is especially effective under full social cooperation [32], however, similar to any

mitigation strategy, such perfect social compliance is difficult to achieve. We, therefore, included
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a fraction f of social defectors, to examine the impact of non cooperative individuals on the the

effectiveness of AQ. We also outline an implementation plan to increase abidance, discussing specific

challenges and merits of the AQ strategy (Fig. 4).

In-house transmission. Similar to any quarantine-based strategy, AQ does not limit infection

between cohabitants. To reduce such in-house transmission, an independent policy of extended

testing and individual isolation must be employed [33]. This track, orthogonal to AQ, is a relevant

complement to any proposed quarantine policy. Indeed, AQ is offered to ease the impact of social

distancing, not to replace other relevant actions that can exist alongside it.

Analysis

Modeling the spread of SARS-CoV-2. In Fig. 1a we present the SARS-CoV-2 characteristic

infection cycle. Upon exposure (E) individuals enter a pre-symptomatic period, which lasts, on

average ∼ 5 days, after which they begin to exhibit mild (IM ), severe (IS) or critical (IC) symptoms,

leading to hospitalization (H), and in acute cases also to ventilation (V ). Approximately 2 days

prior to the onset of symptoms the exposed individuals become infectious, hence, on average, the

infectious phase begins 3 days after initial exposure [8]. Spreading the virus continues until the

onset of symptoms, at which point the infected individuals enter isolation and cease to contribute

to the spread. A fraction of the exposed individuals remain asymptomatic (AS), and hence do not

isolate, throughout their entire infectious period, beginning on average 4 days posterior to exposure

[18]. Hence, the symptomatic carriers spread the disease within an average window of ∼ 2 days

(purple), while the asymptomatic carriers continue to infect others until their immune response

clears the virus.

These time-scales represent the average infection cycle, which, in reality, may exhibit variability

across the population. This is especially relevant regarding the time for the appearance of symp-

toms, which, if delayed beyond 1− 2 weeks, may lead to an infectious crossover between successive

terms of activity, e.g., if a person is infected in week 1, and then, lacking symptoms, resumes

activity in week 3 (see Fig. 1d). Therefore, for each of the relevant time-scales, e.g., the time

from exposure to infectiousness, or the time to develop symptoms, we consider not just the aver-

age, but the complete distribution across the population (Fig. 1c). For example, the probability

density function P1(t
′) captures the fraction of exposed individual who exhibit symptoms within

t ∈ (t′, t′ + dt′) days from exposure. Similarly, P2(t
′) characterizes the transition times between

exposure and asymptomatic infectiousness. The broader are Pi(t
′), the greater is the individual

variability in transition times between the different disease states. Here we extract Pi(t
′) from a

Weibull distribution [13], in congruence with the variability observed in other infections of Corona

type viruses (Supplementary Section 2).

Allowing such distributed transition times between disease states requires a unique modeling frame-

work, that goes beyond the standard implementation of SIR or SEIR modeling [34–38]. Indeed,

transitions such as E → I are typically simulated via a Poissonian process, in which exposed indi-

viduals transform into the infected state at a constant rate [39]. This leads to an exponential decay

in the number of exposed individuals E(t) that begins upon exposure, representing a memory-less

process, whose probability is independent of the time since becoming exposed. Our implementa-

tion, in contrast, incorporates the fact that such transitions are characterized not just by their

average duration a la Poisson, but rather by a specified, empirically relevant distribution. The



4

mathematical implementation of such distributed transition times is detailed in Supplementary

Section 1.

To evaluate the infection rate β we collected data on the evolution of the epidemic in 14 different

countries [40], and examined the mortality D(t) at the early stages of the spread, prior to the

implementation of social distancing policies (Fig. 2a-f). We use D(t) since it represents an objective

measure. This is, as opposed to I(t), the number of (symptomatic) infected individuals, which

may be biased by the volume and nature of each country’s diagnostics. We find that D(t) can be

well approximated by an exponential inflation of the form D(t) ∼ ekt, with k narrowly distributed

across different countries around k ≈ 0.25 days−1. This allows us to extract each country’s intrinsic

infection rate β, finding that, on average, β ≈ 1.25 (Fig. 2m).

Using these coefficients we obtained a projection of the expected evolution of the epidemic (Fig.

2n). We also track the expected fraction of hospitalized (H(t)) and ventilated (V (t)) individuals,

which, we find, exceed, by a significant margin, the average national hospitalization/ventilation

[41] capacities (Fig. 2o). The expected mortality is captured by D(t → ∞) reaching, absent any

mitigation efforts, a level of ∼ 4% (grey). Next, we examine the behavior of COVID-19 under AQ,

together with other relevant strategies.

Mitigation

To examine the impact of our proposed strategy we track the evolution of I(t) = IM (t) + IS(t) +

IC(t). First we allow the disease to proliferate unmitigated (Fig. 3a, orange, UM), then at time t =

t0 (dashed vertical line) we instigate our response. Examining four relevant mitigation strategies,

we establish a basis upon which to evaluate AQ’s performance.

Full quarantine - FQ (Fig. 3a, dark green). This represents the theoretically ideal response, in

which all infectious interactions are fully inhibited, and hence, mathematically, the infection rate

is set to β = 0. Such perfect air-tight quarantine is, clearly, unrealistic, however, it is useful in the

present context, as it provides a baseline for comparison, indeed, setting the bounds for a perfect

mitigation. Unsurprisingly, we find that FQ leads to a rapid exponential decline in I(t), clearing

the population of the virus within a typical time-scale of several weeks [33].

Alternating quarantine - AQ (Fig. 3a, blue). We now examine the AQ strategy. At t = t0
we partition the population into two equal groups, cohorts 1 and 2, and have them alternating

successively between quarantine and regular activity, in a bi-weekly cycle. We find, again, that

I(t) decays exponentially, albeit at a slower rate, as compared to the prefect FQ. The crucial point,

however, is that this decay is now observed, despite the fact that 50% of the population remains

continuously active. AQ achieves this thanks to its weekly periodicity, which is roughly in phase

with the natural ∼ 5 day cycle of incubation and pre-symptomatic infection.

Next, we consider two natural alternatives to AQ, both designed to sustain socioeconomic activity

at a 50% rate:

Intermittent quarantines - IQ (Fig. 3a, turquoise). In this strategy [42] society as a whole

enters a periodic cycle of active vs. quarantined phases, namely the entire population transitions

in unison between staying at home and going to work. Originally proposed in the format of a

4 : 10 periodicity, i.e. 4 days of activity separated by 10 days of quarantine, here we examine its

performance under a 7 : 7 cycle, to be congruent with our implementation of AQ. We find that
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IQ is significantly less effective than AQ, leading not only to higher peak infection, but also to a

substantially longer time to return to normalcy.

Half quarantine - HQ (Fig. 3a, red). Another mitigation alternative that allows a 50% active

workforce is based on a selective quarantine, in which only 50% of the population partakes in

socioeconomic activities, while the remaining half is instructed to stay at home. HQ suppresses

the rate of infection by reducing social interactions by a factor of one half. Our simulation results

indicate, however, that, similarly to IQ, this reduction is insufficient. Indeed, I(t) continues to

proliferate significantly beyond manageable levels, once again, failing to mitigate the disease.

Taken together, we find that AQ provides the most efficient mitigation, bringing us closest to the

ideal performance of FQ, without fully shutting down the economy. To understand the origins

of the observed AQ advantage, we first consider its alternatives, IQ and HQ. The common root

of both strategies is that they reduce the level of interaction by a factor of one half. IQ achieves

this by decreasing the interaction duration; HQ accomplishes this by diluting the interacting

population. In this sense, the strength of AQ is that it benefits from both factors (Fig. 5):

partitioning the population into cohorts ensures that only half are active at all times - similar

to HQ. Yet, the weekly alternations ensure that each cohort remains active only half the time -

similar to IQ. The result is an effective force multiplier, allowing the same amount of net activity

- 50% - but with a dramatically enforced mitigation effect.

Social conformity (Fig. 3b - g). In Fig. 3a, we have examined all mitigation strategies under

perfect conditions, in which all citizens fully comply with the imposed social restrictions. In

reality, however, a certain level of violation is inevitable. Therefore, we now introduce a fraction

f of defectors, who continue their activity at all times, both during their active shift as well as

when they are instructed to quarantine. Despite these defection levels, we continue to assume that

symptomatic patients remain cooperative. Indeed, not only are COVID-19 symptoms difficult to

conceal, but also most individuals, even defectors, do not have the audacity to commit explicit

violations, knowingly interacting when they are infectious. We find that AQ continues to suppress

the disease, even as defection levels approach f = 10% (Fig. 3b - d).

While the majority of infected individuals exhibit mild or no symptoms, a certain percentage may

experience severe complications, leading to hospitalization or ventilation, and in some cases to

mortality (Fig. 1a). Our mitigation strategy focuses on these undesired paths within the infection

track - namely, we aim to decrease mortality D(t), and ensure that at their peak, H(t) and V (t)

do not exceed the national hospitalization and ventilation capabilities. To test this we measured

the residual mortality

∆D = DS(t→∞)−DFQ(t→∞) (1)

where DS(t → ∞) is the long term mortality under strategy S, e.g., IQ or AQ, and DFQ(t → ∞)

is the expected mortality under FQ. Indeed, DFQ(t → ∞) represents inevitable deaths, rooted in

infections that occurred prior to our response, and hence ∆D captures the additional mortality,

that our mitigation failed to prevent. In Fig. 3e we measured ∆D vs. the defection level f under

IQ (turquoise) and AQ (blue). We find, quite expectantly, that as defection levels rise, so does the

residual mortality. However, most crucially, AQ consistently saves more lives, compared to IQ.
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To examine the impact of AQ on the severe and critical patients, we measure

HPeak =
∞

max
t=t0

H(t), (2)

capturing the peak hospital occupancy after instigating our response (Fig. 3f). While IQ (turquoise

circles) fails to bring HPeak within capacity (dashed grey line), AQ (blue circles) sustains a leveled

occupancy even under as much as f = 20% defection. Hence, AQ is highly robust against partial

compliance - a crucial requisite for any practical mitigation strategy. Similar results are also

obtained for VPeak = max∞t=t0 V (t) (Fig. 3g).

Synergistic measures

Our analysis, up to this point, assumed a worst case scenario, in which, aside from our mitigation

strategy (AQ, IQ or HQ), all other disease parameters remain unchanged. In reality, however, in

addition to AQ, or any other strategy for that matter, we can expect, at the least, that standard

prophylactic behaviors will continue to be practiced. Indeed, personal hygiene, face-masks and

contact avoidance can reduce infections significantly, without taking any toll on the economy.

Therefore, in practice, the infection rate β = 1.25, inferred from the early, pre-mitigation stages of

the epidemic, will likely be reduced as we gradually relax social distancing and resume normalcy.

We, therefore, examine the performance of the different mitigation strategies also under a reduced

β, capturing the synergistic effect offered by prophylactic practices. In the intermediate case we

set β = 1, a 20% reduction in the rate of infection (Fig. 3h - n), and as our best case scenario,

we examined β = 0.75, capturing a 40% drop in infectiousness (Fig. 3o - u). Under these more

favorable conditions, AQ’s performance approaches even closer to the ideal FQ (e.g., Fig. 3o), and,

strikingly, it exhibits robust mitigation, even under 20 or 30% defection (Fig. 3k,r).

More generally, our AQ strategy can, and should, be reinforced by other complementary poli-

cies, to ensure mitigation success. For example, the selective protection of vulnerable populations,

avoidance of social gatherings and the establishment of isolation facilities to reduce in-house trans-

mission. All of these policies can be instigated alongside, rather than instead, of AQ. One may

also consider alternative periodic cycles. For instance, a 5 : 9 cycle, in which the active shifts last

only 5 days. In this version of AQ, society enters a routine in which each cohort is allowed a 5

day work-week, then observes population-wide quarantine over the weekend. Such adaptations will

further improve the performance of AQ beyond its already established effectiveness.

Implementation

The AQ strategy works best when the two cohorts are fully separated, lacking all forms of cross-

group infection. The partition should, therefore, be implemented at a household level, ensuring all

cohabitants are in the same activity/quarantine cycle. A simple way to achieve this is to base the

partition on a person’s living address. This provides an additional benefit, in the case of apartment

buildings, as neighbors, who risk cross-infection through shared building facilities, are included in

the same cohort. Each individual/household will be informed by their local authority of their

quarantine schedule, and in parallel, employers will be instructed to resume their activity in shifts,

with only half the workforce at a time. Businesses will be held legally liable and incur significant

fines in case of violation.
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Instances of conflict between a person’s assigned shift and their employer’s specific requirements

will be resolved on a case by case basis - all while strictly adhering to the household-based partition.

The resulting cohorts will likely deviate from an exact balanced cut, due to differences in household

sizes and other constraints, however, the crucial point is, that the partition need not be perfect,

as, indeed, the cohorts must be decoupled, but not necessarily equal in size. Therefore, some level

of flexibility is enabled to accommodate specific constraints or special needs.

While AQ is found to be efficient even under partial social abidance (f), there are several recom-

mended measures to increase the level of cooperation:

Communication. To engage the population towards cooperation, the first step is to communicate

the rationale behind AQ, its potential effectiveness, and the individual compliance required for its

rapid success. This appeals to people’s intrinsic motivation [43], a crucial component of conformity,

but often also insufficient due to the tragedy of the commons. We therefore map the drivers, that

enhance people’s desire to cooperate, vs. the inhibitors, that stand in their way [44, 45], and set

appropriate moderators to enforce the drivers and suppress the inhibitors (Fig. 4).

Inhibitors (Fig. 4a). During its lock-down cycle, the quarantined cohort is required to stay at home

for one week, indeed, a challenge, however, being limited in time, it is significantly less stressful

than an extended several week quarantine. We identify four motivators to violate the quarantine:

Business - going to work, Schooling - arrangements for child care, Services and supplies - visiting

public market places or service centers, and Outdoors - exercise or strolling with children or pets.

Of these, the latter, being in the open, is least risky, and also practically unavoidable, as young

children and pets require routine outdoor activity. We, therefore, focus on moderators especially

for the first three inhibitors.

Moderators (Fig. 4c). While moderation can be achieved via coercion, e.g., law enforcement, it

is most effectively implemented by creating supporting frameworks for cooperation. For example,

in the AQ framework, defection for business and schools is simply not possible. Indeed, since

businesses are legally required to divide their workforce into shifts, one cannot go to work out

of cycle. Similarly, schools will not admit children who are not in the presently active cohort.

Therefore, the main challenge is to deter violators from visiting public places for supplies or services.

This can be achieved by (i) instructing the population to prepare in advance for a full week of

isolation; (ii) establishing a logistic and psychological support network to aid citizens who encounter

unexpected needs; (iii) creating a dedicated app to issue exit permits only to members of the active

cohort. The app in (iii) will not violate citizen privacy in any way, but only indicate if the device

holder is in Cohort 1 or 2. Residents will be asked to present their app to enter shopping centers

or public institutions.

Together, the proposed moderators create a framework that not only diminishes incentives for

defection, e.g., by logistically supporting the isolated cohort, but also eliminates the means, as,

indeed, aside from daily outdoor strolling, practically all other out of home activities are auto-

matically barred by the AQ framework itself. The strength of this implementation plan is that it

achieves this without coercion, namely that almost no enforcement via authorized forces against

individuals is required, maintaining a level of trust between citizen and government and securing

personal freedoms. To complete the plan, at the end of the isolation week, all isolated residents

will be required to report their health status via the app. Those who report symptoms, as well

as their cohabitants, will remain at their stay-home status, going into isolation until their verified
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recovery.

Alternating vs. population-wide quarantine

The proven advantages of AQ indicate that it is not merely an exit strategy from a period of

population-wide quarantine (PWQ), but may actually serve as an initial response strategy, instead

of such quarantine. To understand this we consider both the implementation challenges as well as

the epidemiological merits of both strategies.

Intuitively, one would expect a time-limited PWQ to be more effective than AQ, both in terms of

mitigation - isolating larger parts of the population, as well as in terms of implementation - not

having to resolve between the two cohorts. Our analysis, however, indicates that AQ has crucial

advantages on both fronts. The implementation challenge of PWQ is that it requires people to stay

at home for a period of several weeks, in order for the mitigation to take effect. For example, in Fig.

3a we found that a 100% perfectly implemented quarantine (FQ), which is, indeed, a theoretical

construction only, still required 5 − 7 weeks to achieve a significant gain over the disease. Under

these conditions, one cannot implement a truly complete lock-down. Essential services, supply

chains and some parts of the market must remain active, since households cannot retain supplies

and remain self-sufficient for such extended periods. Therefore, a practical PWQ can at most be

implemented at a level of 70− 80% [46].

In contrast, the AQ scheme requires citizens to isolate only for a single week at a time. Hence,

the quarantined cohort can truly enter, for just one week, a complete lock-down regime, in which

they avoid purchasing supplies or any other services. Consequently, under AQ, while a larger part

of the population is active at all times, the quarantined cohort, can sustain a much stricter lock-

down routine. As a result not only is the economy more productive, with 50% of the population

continuously active, but the mitigation outcome is also comparable, and under some conditions

even superior. To demonstrate this, in Fig. 6 we examine the impact of PWQ, imposed at a level

of 50, 60, 70, 75 and 80% (red to yellow). We then compare it with the performance of AQ (blue).

Note that the 80% PWQ case represents the practical upper bound for any realistic PWQ.

We find that AQ’s mitigation effect (blue) falls in between that of a 75 (orange) to 80% (yellow)

PWQ. Yet whereas PWQ at such levels severely compromises the economy and imposes significant

social and psychological stress, AQ accomplishes a similar effect, while sustaining a productive

economy, and allowing a manageable routine for the individual. Therefore, we believe AQ to be

the optimal strategy to manage our socioeconomic activity alongside COVID-19 mitigation.

Discussion

The efficiency of the AQ strategy is rooted in three principals: (i) Partitioning the population into

two cohorts reduces the volume of infectious interactions, comparable to a 50% quarantine (HQ).

(ii) Working in weekly succession reduces the total duration of interaction within each cohort,

similar to intermittent quarantines (IQ). Combined these two factors together, allows a similar net

volume of socioeconomic activity as in any of the above strategies, HQ or IQ, but with a multiplied

mitigation effect. While (i) and (ii) are independent of the succession period, e.g., daily or weekly,

our design of AQ around weekly alternations provides a third advantage: (iii) It synchronizes the

quarantine phase with the suspected incubation period of each cohort, hence systematically pruning
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out the invisible SARS-CoV-2 spreaders.

Alternating quarantine can be implemented as an exit strategy, following a period of suppression

via population-wide quarantine. As such, it allows a gradual reigniting of a dormant economy,

while minimizing the risk of a recurring outbreak. However, our results indicate that it can also

serve as a primary mitigation strategy, with comparable impact to that of a strict population-wide

quarantine (Fig. 6).

A crucial strength of AQ is its robustness against defection, under some conditions withstanding as

much as 30% violators. Nevertheless, we believe that the weekly relief, allowing people an outlet to

continue their activity for half of the time, may, itself, increase cooperation levels. Indeed, while a

complete lock-down is extremely stressful for the individual, the AQ bi-weekly routine relaxes the

burden, and may encourage compliance. Moreover, with workplaces and schools forced to operate

in fully partitioned shifts, and with our suggested mobile app and logistic support network, the

implementation of AQ has little dependence neither on self-motivation nor on externally enforced

cooperation (Fig. 4). Indeed, schools and employment will naturally drive the population between

activity and inactivity, with enforcement only required to treat outdoor recreation - which, in any

case, has little contribution to the infection. This affords us a degree of freedom to allow certain

levels of authorized defection, i.e. a quota of essential workers, relieved from the quarantine cycles.

Our analysis assumes an incubation period that is of the order of a single week, specifically in our

simulations, we set it at an average of 5 days. The rationale however is more general, and can be

adapted to longer or shorter incubation times, simply by tuning the periodicity of the alternating

shifts, keeping them congruent with the natural cycle of the infection.

More broadly, we consider the fact that there is, inherently, some level of uncertainty regarding

the disease parameters. We therefore examined the worst case scenario, in which the infection

rate during the active weeks is the same as that of the unmitigated spread. In practice, however,

we expect many additional measures to be implemented in parallel to the quarantines, such as

extended testing for infections, face-masks and strict hygienic regulations at the workplace. At

the least, we expect standard prophylactic behavior, such as avoiding contact or banning social

gatherings, to be observed also during each cohort’s active week. Such norms, that will continue

until COVID-19 is fully eradicated, will further push down β, enhancing the effectiveness of our

strategy even beyond the reported results.

Here, we have mainly discussed the epidemiological merits of AQ, and its implementation, in

broad strokes, as a national strategy. In practice, different societies, as well as different economic

sectors, will require specific adaptations. For example, while AQ is naturally compatible with

non-profesional industries, in which workers can be arbitrarily partitioned into shifts, it becomes

more challenging in professional workplaces, where key personnel may be irreplaceable. Specific

solutions, therefore, must be tailored to accommodate different economies and sectors. In light of

the unambiguous mitigating advantage, we believe such adaptations are, by far, worth the effort.

Data availability. All codes to reproduce, examine and improve our proposed analysis are avail-

able at https://github.com/drormeidan/ALDCOVID19.

https://github.com/drormeidan/ALDCOVID19
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′) 𝑷𝟐(𝒕

′) 𝑷𝟑(𝒕
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FIG. 1: The cycles of SARS-CoV-2 and COVID-19 vs. those of the Alternating quarantine
strategy. (a) We collected data on the transitions between the SARS-CoV-2 and COVID-19 states and
constructed the characteristic disease cycle. Upon exposure (E) individuals enter an average 5 day incubation
period prior to developing symptoms - mild (IM at a rate of 55%), severe (IS , 10%) or critical (IC , 5%). The
remaining 30% are asymptomatic (AS). Infectiousness begins typically 3 days after exposure for symptomatic
carriers, and 4 days for the asymptomatic (AS). The infection window (violet) captures the invisible pre-
symptomatic (PS) spreading phase, in which individuals are infectious, but lack symptoms. Upon the onset
of symptoms, infected individuals are isolated and cease to infect others. Consequently, asymptomatic
individuals have a longer infection window, which extends until their transition to R. As the disease
progresses a fraction of the infected population may require hospitalization (H) or ventilation (V ), leading,
with some probability to mortality (D). (b) The compartments of the COVID-19 cycle. We denote by I(t)
the unity of all symptomatic individuals (I = IM + IS + IC). This corresponds to the diagnosed case count
in each country (Fig. 2), which covers mainly the patients who exhibit symptoms. (c) While the illustrated
cycle in (a) captures the average transition times between all states, in reality, some level of variability exists
across the population. This is captured by the distribution Pi(t

′). For example the individual transition
time from E to PS, whose average is 3 days, is extracted from P1(t′) (purple). (d) Alternating quarantine
(AQ) splits the population into separate cohorts that alternate between periods of activity (going to work,
blue) and inactivity (staying at home, red). Following their active week (week 1) individuals in Cohort 1
may become exposed (yellow), in which case they will sit out their suspected pre-symptomatic period at
home (week 2). By the end of their quarantine week they will likely develop symptoms (orange) and remain
in isolation until their full recovery. Those who did not develop symptoms during their week of quarantine
are most likely uninfected (blue) and can resume activity in their upcoming active shift (week 3). Therefore
the AQ cycle behaves as a ratchet, consistently quarantining the invisible spreaders, and hence, removing,
with each weekly succession, infectious individuals from the active population.
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FIG. 2: Extracting SARS-CoV-2 infection rate. (a) - (f) We collected data [40] on the mortality
D(t) vs. t (grey circles) as observed in 14 different countries (only six are shown here), and measured its
exponential growth rate (black solid lines). This allowed us to evaluate the observed infection rate β in every
country. In each panel we also indicate the time for the institution of social distancing policies (dashed lines).
Exponential growth typically continues for a period of 1 to 2 weeks posterior to such policies. We, therefore,
used only the data up to one week after the implementation of social distancing to evaluate the exponential
growth. (g) - (l) To further examine our data-extracted β, we used it to predict I(t) in each country, based
on all reported cases. We find that the data (orange circles) is well-approximated by our projections (black
solid lines), further confirming the relevance of our modeling framework, and its extracted parameters.
Since asymptomatic individuals are, in the majority of cases not diagnosed, we evaluate infection levels
via I(t) = IM (t) + IS(t) + IC(t), as defined in Fig. 1b. (m) Histogram of inferred β values across the 14
countries. Infection rates are distributed around an average of β = 1.25. Hence, in our simulations we take
this value to represent the rate of infection, in the absence of all prophylactic measures. In reality, standard
behavioral practices, such as personal hygiene or avoidance of physical contact, may push β to significantly
lower values. Hence, in our simulations we incorporate three scenarios: worst case - β = 1.25, intermediate
case - β = 1 and best case - β = 0.75, all of which, we believe represent rather conservative estimates of the
actual β. (n) Taking β = 1.25 we simulated the projected evolution of the COVID-19 pandemic, without
any preventive measures. (o) We focus on three crucial parameters that characterize the severity of the
projected spread: mortality D(t) (grey), hospitalization level H(t) (purple) and the number of individuals
requiring ventilation V (t) (brown). Absent any intervention, at their peak, both H(t) and V (t) exceed, by
a large margin, the average national hospitalization/ventilation capacities, estimated at 3 × 10−3 (dashed
pink line) and 7× 10−4 (dashed grey line), respectively [41].
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FIG. 3: The impact of Alternating quarantine. (a) The infection I(t) vs. t of the unmitigated epidemic
(UM, orange), as obtained under the worst case scenario of β = 1.25. At t0 = 50 days (dashed grey line)
we instigate four competing mitigation strategies: Full quarantine (FQ, dark green), Alternating quarantine
(AQ, blue), Intermittent quarantines (IQ, turquoise) and Half quarantine (HQ, red). We find that, under
these conditions, apart from the idealized FQ, only AQ provides successful mitigation (log-scale appears in
the inset). (b) - (d) To examine the robustness of AQ (blue) and IQ (turquoise) against partial compliance,
we allowed a fraction f of quarantine violators. AQ continues to performs well even under f = 0.08
(d), capturing an 8% defection level. (e) Residual mortality ∆D (1) vs. the defection rate f . (f) Peak
hospitalization HPeak vs. f . AQ (blue) ensures that occupancy is within the average national hospitalization
capacity (dashed grey line) even when challenged by an f = 0.2 defection rate. IQ (turquoise), on the
other hand, overburdens the health case system, beyond its maximal capacity already at f = 0. (h) - (n) A
similar analysis, this time assuming that for t > t0, the infection rate drops by 20% to β = 1. AQ retains
its mitigation advantage, now being able to sustain even higher defection rates. (o) - (u) In our best case
scenario we take the infection rate, posterior to our intervention (t > t0) to be β = 0.75.
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FIG. 4: Driving social conformity for Alternating quarantine. (a) We identify four needs that inhibit
potential cooperation: child care arrangements, work, purchasing supplies or services and outdoor activities.
(b) Infection risk is highest under extensive and continuous interactions, such as in school or at work, and
least significant during open-air activities, such as strolling or exercising. We therefore focus on moderators
mainly for the first three inhibitors. (c) To enhance social compliance we seek moderator that encourage
conformity in lieu of coercive enforcement: School and work. Due to their liability, schools and workplaces
will be naturally prohibited for the quarantined cohort, as both will be required to abide by the AQ routine,
and therefore will not admit workers or students of the inactive cohort. In addition, routine inspections for
symptoms will expose potential defectors who wish to conceal their infection. Public centers. We consider
three moderators to deter individuals from seeking services or supplies: (i) instruct the population to obtain
sufficient supplied in advance for a single week; (ii) establish a support network in case of unexpected needs;
(iii) create a mobile app confirming an individual’s cohort (1 or 2), that must be displayed upon entry to
public centers. Outdoor activity could be moderated by enforcement, however, since it poses little infection
risk, we believe such activity should, in practice, be ignored.
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FIG. 5: The multiplicative effect of Alternating quarantine. We consider three strategies - all allow-
ing socioeconomic activity (blue) vs. quarantine (red) at half capacity. (a) The Half quarantine strategy
reduces infection by diluting the active population, hence decreasing the rate of infectious interactions. (b)
Intermittent quarantines achieve a similar outcome by diminishing the duration of activity, hence reducing
the time of infectious interactions. (c) Alternating quarantines combine both effects: on the one hand in-
teractions are limited to individuals within each cohort - diluting the population. On the other hand these
cohorts experience intermittent cycles of work/home - diminishing interaction duration.
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FIG. 6: Alternating quarantine vs. population-wide quarantine. (a) Infection level I(t) vs. t as
obtained for β = 1.25. At t0 = 50 days (dashed grey lines) we initiate our mitigation via Alternating
quarantine (AQ, blue). We also examined population-wide quarantines at 50, 60, 70, 75 and 80% levels (red
to yellow). Despite having half of the population active at all times, AQ’s mitigation is comparable to that
of an 80% population-wide quarantine. Hence, instead of an extremely hurtful socioeconomic shutdown
of 75 to 80%, indeed the practical upper bound of social distancing policies, AQ offers a similar outcome
under a significantly reduced socioeconomic price-tag. (b) - (c) Similar results are observed also under our
intermediate (β = 1) and best case (β = 0.75) scenarios.
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I. MODELLING THE COVID-19 EPIDEMIC SPREAD

A. Modeling the unmitigated epidemic

We consider a population of N individuals, of which S(t) are susceptible, E(t) are exposed, I(t)
are infected, R(t) are recovered, D(t) are deceased, H(t) are hospitalized and V(t) are ventilated.

Hence, S(t) +E(t) + I(t) +R(t) +V(t) +H(t) +D(t) = N for all t. The exposed population consists

of individuals who have been exposed to the virus, but are not yet infectious. This population is

divided into two sub-populations, ES(t) and ENS(t), where ES(t) are the exposed individuals that

will develop symptoms eventually, whereas ENS(t) are the exposed individuals who will recover

without ever developing symptoms, i.e. asymptomatic.

The infected population I is also subdivided into several sub-populations, INS(t) are the non-

symptomatic individuals, who never develop symptoms, IPS(t) are the pre-symptomatic individuals,

who are currently non-symptomatic, but will eventually develop symptoms. Of the symptomatic,

IM(t), IS(t), and IC(t) represent mild, severe and critical condition infected individuals, respectively.

The hospitalized population is denoted by H, and the ventilated by V. Note that hospitalized

individuals are a sub-group of the infected, and that ventilated individuals are a sub-group of

the hospitalized. However, in our modeling we treat these populations as distinct, hence I,H and

V represent different compartments with no overlap. R are the recovered individuals, who are

assumed not to be susceptible to the infection again, at least not during the current outbreak, and

D are the deceased individuals, who did not survive the disease. The transition cycle appears if

Fig. 7.

In order to model the transitions between the states, we write the rate equations for the different

population sizes. For some of the transitions, there is an empirical estimate on the distribution

of the transition time between the states. Thus, in order to make the model realistic, we use the

empirical distribution rather than a Markov process. In order to simplify the equations, we use

the notation
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FIG. 7: The infection cycle of SARS-CoV-2.

dE+(t)

dt
= β

(
INS(t) + IPS(t)

)S(t)

N
, (3)

to capture the positive contribution to the exposed population, due to interaction with I individuals

around the time t. As symptomatic individuals are isolated, this contribution is proportional to

the number of infected individuals with no symptoms, INS(t) + IPS(t), and to the probability S/N
for them to interact with a susceptible individual. The rate of infection is β. Of all individuals

infected around t − t′, a fraction P (t′) will transition to the I state at time t, and therefore the

rate of reduction in E (or contribution to I) at time t is captured by the convolution

P ∗ dE+

dt
=

∫ t

0
P (t′)

dE+(t− t′)
dt

dt′ . (4)

Equation (4) sums over all individuals exposed from t = 0 until the present time t, who will

transition from E to I around the time t. Below we use the notation of Eqs. (3) and (4) also for

different states within E (ES,ENS) and for different transtions (Pi(t
′).

To write the equations, we consider the normalized populations S(t) = S(t)/N, I(t) =

I(t)/N,E(t) = E(t)/N , etc., capturing the fraction of individuals in each state. We arrive at

the following equations, incorporating all transitions

dS

dt
= −βS(t)

(
INS(t) + IPS(t)

)
(5)

dENS

dt
= βS(t)

(
INS(t) + IPS(t)

)
− P1 ∗

dENS+

dt
(6)

dES

dt
= (1− PNS)βS(t)

(
INS(t) + IPS(t)

)
− P1 ∗

dES+

dt
(7)

dINS

dt
= P1 ∗

dENS+

dt
− P2 ∗

dENS+

dt
(8)

dIPS
dt

= P3 ∗
dES+

dt
− P4 ∗

dES+

dt
(9)
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dIM
dt

= PMP4 ∗
dES+

dt
− rMRIM (10)

dIS
dt

= PSP4 ∗
dES+

dt
− rSHIS (11)

dIC
dt

= PCP4 ∗
dES+

dt
− rCVIC (12)

dH

dt
= rSHIS − PHRrHRH − PHDrHDH (13)

dV

dt
= rCVIC − PVRrVRV − PVDrVDV (14)

dR

dt
= P2 ∗

dENS+

dt
+ PHRrHRH + PVRrVRV + rMRIM (15)

dD

dt
= PHDrHDH + PVDrVDV (16)

Here Pi(t
′) represent the density functions for the transition times between the different states:

i = 1, transition time from ENS to INS; i = 2, transition from ENS to R; i = 3, transition from

ES to IPS; i = 4, transition from ES to IM, IS or IC, namely from exposure to appearance of

symptoms. We focus on these four distributions both because there exists empirical data by which

to construct them, but also because they represent the most relevant transitions for the crucial

stages in the disease cycle. the parameters PM, PS, and PC represent the probabilities to become

mild (0.55), severe (0.1) or critical (0.05); PAB is the probability to transition from state A to B

(where A and B are states) and rAB are the rates of transitions. PNS is the probability to become

infected but non-symptomatic (0.3), see Fig. 7.

B. Modeling alternating quarantine

To track the dynamics of COVID-19 under alternating quarantine we first partition the population

into 2 groups that alternate between the lock-down state L and the free state F. In each of these

groups there is a fraction f of defectors D and 1− f of cooperators C. This divides all individuals

into four distinct classes: LC,LD,FC and FD, capturing the cooperators/defectors in the locked-

down/free groups. Since the defectors are active every week, we do not distinguish between the

LD and FD groups, and simply denote them by D. We use superscript to denote an individual’s

class, hence, e.g., ELC(t) represents the amount of exposed individuals who are in the lock-down

group and are cooperative. These individuals will not contribute to the infection, as they comply

with the stay-home instructions. Conversely, ED(t) captures the defecting individuals, who choose

to remains active and violate the lock-down. Together with EFC(t), the exposed individuals in the

F group, they will contribute to spreading the virus.

Infections are caused by all exposed individuals who remain active, whether officially or by defec-

tion. As explained above, the infected are always isolated, even if defective, hence all I individuals,

aside from IPS and INS, are excluded from the process of infection. This results in two sets of

equations. For the free group we write
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dSFC

dt
= −βS(t)

(
IFC
NS (t) + IFC

PS (t) + IDNS(t) + IDPS(t)
)

(17)

dEFC
NS

dt
= βS(t)

(
IFC
NS (t) + IFC

PS (t) + IDNS(t) + IDPS(t)
)
− P1 ∗

dEFC
NS+

dt
(18)

dEFC
S

dt
= (1− PNS)βS(t)

(
IFC
NS (t) + IFC

PS (t) + IDNS(t) + IDPS(t)
)
− P1 ∗

dEFC
S+

dt
(19)

dIFCNS

dt
= P1 ∗

dEFC
NS+

dt
− P2 ∗

dEFC
NS+

dt
(20)

dIFCPS

dt
= P3 ∗

dEFC
S+

dt
− P4 ∗

dEFC
S+

dt
(21)

dIFCM

dt
= PMP4 ∗

dEFC
S+

dt
− rMRI

FC
M (22)

dIFCS

dt
= PSP4 ∗

dEFC
S+

dt
− rSHIFCS (23)

dIFCC

dt
= PCP4 ∗

dEFC
S+

dt
− rCVI

FC
C (24)

dHFC

dt
= rSHI

FC
S − PHRrHRH

FC − PHDrHDH
FC (25)

dV FC

dt
= rCVI

FC
C − PVRFCrVRV − PVDrVDV

FC (26)

dRFC

dt
= P2 ∗

dENS+

dt
+ PHRrHRH + PVRrVRV + rMRIM (27)

dDFC

dt
= PHDrHDH

FC + PVDrVDV
FC (28)

For the quarantined population the equations are

dSLC

dt
= 0 (29)

dELC
NS

dt
= −P1 ∗

dELC
NS+

dt
(30)

dELC
S

dt
= −P1 ∗

dELC
S+

dt
(31)

dILCNS

dt
= P1 ∗

dELC
NS+

dt
− P2 ∗

dELC
NS+

dt
(32)

dILCPS

dt
= P3 ∗

dELC
S+

dt
− P4 ∗

dELC
S+

dt
(33)



24

dILCM

dt
= PMP4 ∗

dELC
S+

dt
− rMRI

LC
M (34)

dILCS

dt
= PSP4 ∗

dELC
S+

dt
− rSHILCS (35)

dILCC

dt
= PCP4 ∗

dELC
S+

dt
− rCVI

LC
C (36)

dHLC

dt
= rSHI

LC
S − PHRrHRH

LC − PHDrHDH
LC (37)

dV LC

dt
= rCVI

LC
C − PVRLCrVRV − PVDrVDV

LC (38)

dRLC

dt
= P2 ∗

dENS+

dt
+ PHRrHRH + PVRrVRV + rMRIM (39)

dDLC

dt
= PHDrHDH

LC + PVDrVDV
LC (40)

Finally, for the defectors we have

dSD

dt
= −βS(t)

(
IFC
NS (t) + IFC

PS (t) + IDNS(t) + IDPS(t)
)

(41)

dED
NS

dt
= βS(t)

(
IFC
NS (t) + IFC

PS (t) + IDNS(t) + IDPS(t)
)
− P1 ∗

dED
NS+

dt
(42)

dED
S

dt
= (1− PNS)βS(t)

(
IFC
NS (t) + IFC

PS (t) + IDNS(t) + IDPS(t)
)
− P1 ∗

dED
S+

dt
(43)

dIDNS

dt
= P1 ∗

dED
NS+

dt
− P2 ∗

dED
NS+

dt
(44)

dIDPS
dt

= P3 ∗
dED

S+

dt
− P4 ∗

dED
S+

dt
(45)

dIDM
dt

= PMP4 ∗
dED

S+

dt
− rMRI

D
M (46)

dIDS
dt

= PSP4 ∗
dED

S+

dt
− rSHIDS (47)

dIDC
dt

= PCP4 ∗
dED

S+

dt
− rCVI

D
C (48)

dHD

dt
= rSHI

D
S − PHRrHRH

D − PHDrHDH
D (49)

dV D

dt
= rCVI

D
C − PVRDrVRV − PVDrVDV

D (50)

dRD

dt
= P2 ∗

dENS+

dt
+ PHRrHRH + PVRrVRV + rMRIM (51)
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dDD

dt
= PHDrHDH

D + PVDrVDV
D (52)

To set the initial conditions we consider the response time t0 when we employ our intervention.

At this time point the state of the system is given by S(t0), E(t0), I(t0), R(t0). We first partition

them into two equal groups, each with a fraction f of defectors. Hence at the intervention point

t0 we have

SFC(t0) = SLC(t0) = 1
2(1− f)S(t0), SD(t0) = fS(t0) ,

EFC(t0) = ELC(t0) = 1
2(1− f)E(t0), ED(t0) = fE(t0) ,

IFC(t0) = ILC(t0) = 1
2(1− f)E(t0), ID(t0) = fI(t0) ,

RFC(t0) = RLC(t0) = 1
2(1− f)R(t0), RD(t0) = fR(t0) ,

HFC(t0) = HLC(t0) = 1
2(1− f)H(t0), H

D(t0) = fH(t0) ,

V FC(t0) = V LC(t0) = 1
2(1− f)V (t0), V D(t0) = fV (t0) ,

DFC(t0) = DLC(t0) = 1
2(1− f)D(t0), DD(t0) = fD(t0) .

(53)

Setting the initial condition according to Eq. (53) we solve Eqs. (17) – (52) for a period of 7 days.

We then switch between the L and F groups, setting SLC(t) = SFC(t), ELC(t) = EFC(t) . . . and

vice versa, proceeding to solve the equations for an additional 7 days. We continue with such

weekly iterations, until we reach steady-state where I(t→∞)→ 0.

C. Modeling alternating quarantine with a 5 : 9 cycle

Another possible policy is a scheme with alternating groups, each free for a week and in quarantine

for the following week, which also has full quarantine during the weekends. Here, there is no

incentive for defection during the weekend, as all businesses and workplaces are closed. This

also makes monitoring the quarantine easier, as all the population is at the stay-home state, and

therefore prohibits weekend defection.

In order to model the epidemic spreading in this population, Eqs. (17) – (52) are used for the

different groups during working weekdays, whereas for the weekends, Eqs. (29) – (40) are used for

the entire population.

D. Implementation details

The equations were solved using a Runge-Kutta stepper. the convolution integrals were evaluated

numerically using a standard rectangle approximation. Distributions P1 to P4 were estimated using

the Weibull distribution. See Section II for details.

For the alternating quarantine scheme, Eqs. (17) – (52) were solved numerically, where it should

be noted that the convolution integrals are calculated for the same group, i.e. the convolution for

the quarantine group for a time when it was free (say a week earlier) is done on the values for what
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was then the free group. In simple words, the convolution terms remember the states of the free

(quarantines) group from the the time it was quarantined (free).

II. DATA ANALYSIS AND PARAMETER SELECTION

A. Constructing the distributions Pi(t
′)

Most of the parameters described in Section I were chosen based on observed values of the char-

acteristic SARS-CoV-2 infection cycle. For the density functions Pi(t
′), i = 1, . . . , 4, we used a

Weibull distribution, inspired by other infections of the Corona variety. To estimate the parameters

of the Weibull distribution we collected data on the average TAv and median TMed of the relevant

transition times [13, 18]. The allows to infer the Weibull parameters λ and k via

TAv = λΓ(1 + 1/k);

TMed = λ(ln 2)1/k.

See Table I for the different values of mean, and median we have used.

Duration Mean Median λ k

P1(t
′) 4 3.44 4.42 1.47

P2(t
′) 10 8.6 11.04 1.47

P3(t
′) 2 1.72 2.21 1.47

P4(t
′) 5 4.3 5.52 1.47

TABLE I: Estimating the distribution parameters. With data on the average and mean transition
times, we reconstructed the distributions Pi(t

′).

B. Estimating the rate infection β

The parameter β incorporates both the rate of interaction between a Susceptible person and an

Infectious one (be it asymptomatic or pre-symptomatic), and the probability of infection per in-

teraction. Hence we expect β to depend on different aspects of social behavior, personal hygiene

routines and contagion characteristics of the pathogen, whose specific parameters are hidden. As a

consequence, we need to infer β from observation. As the last step of model calibration, β depends

on the other parameters of the model, e.g., if the mean period of contagion is shortened, ceteris

paribus, β will increase.

As the disease spreads, precautions like social distancing and wearing masks affect both the rate

of interaction and the probability of infection. That is, β changes over time. Being conservative,

we have chosen to use a value of β reflecting the period before such measures were taken.

We have used daily data for the number of confirmed cases and the number of fatalities in several

countries. The data set was compiled by and obtained from the Johns Hopkins University Center
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for Systems Science and Engineering (JHU CSSE) on April 11th 2020 and is available online here:

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases [40].

The number of confirmed cases may be biased as a result of limited availability of tests. The

number of fatalities, in contrast, is more objective and therefore considered more reliable. Still, in

many places deaths out of hospital were not counted, regardless of cause. Moreover, D(t) and β

are separated by a few compartments in the model, causing the calculation to be more involved.

To treat this, we first used the number of deceased to estimate β, then tested the goodness of fit

on the number of confirmed cases I(t). As can be seen in Figure 8 (and Fig. 2 of main text), the

results are satisfactory with very good agreement, with the one exception of Norway, where our

retrieval of I(t) shows some deviation.

As mentioned above, β changes over time as more countermeasures are taken. We have decided to

calibrate the model using data starting 3 days before lock-down, as prior to that cases may have

been missed by an unready system and ending 10 days after lock-down, when the lock-down starts

affecting the number of fatalities. When fitting for the number of confirmed cases, a shorter period

was considered. See Table II for the period of estimation per country.

We have chosen countries having prominent number of cases for which reliable data is available.

We have also aimed to get a balanced representation, as much as possible, between southern and

northern hemisphere countries.

For every country we estimated β by choosing the value β̂ minimizing mean squared error between

model prediction and true number of deceased, throughout the period starting 3 days before lock-

down and ending 10 days after. See Figure 8 for results per country and Figure 9 for the overall

distribution of β̂.

Country Population First case Lock-down β̂

Italy 60 10 48 1.5

USA 328 1 61 1.4

Argentina 45.1 42 58 1.3

N. S. Wales 8.1 5 62 0.85

Israel 8.9 32 64 1.4

Austria 8.9 35 55 1.3

Spain 46.9 11 51 2.3

Germany 83 6 62 1.4

Norway 5.4 36 49 0.95

South Korea 51.3 1 None 1

Colombia 50.8 45 64 1.3

Belgium 11.6 14 57 1.4

Hubei, China 58.5 1 2 1.3

England 56 1 46 1.05

TABLE II: Estimating β per country. Population is given in millions. First case and Lock-down are
given in days relative to 22/1. The parameter β̂ represents the estimation for β, as extracted from the

relevant country data. See Fig. 9 for a histogram of β̂.

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
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𝒕 (𝐝𝐚𝐲𝐬)

𝑫
(𝒕
)

𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬)

Spain Germany Norway South Korea(a) (b) (c) (d)

𝒕 (𝐝𝐚𝐲𝐬)

𝑰(
𝒕)

𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬)

(e) (f) (g) (h)𝜷 = 𝟐. 𝟑 𝜷 = 𝟎. 𝟗𝟓 𝜷 = 𝟏𝜷 = 𝟏. 𝟒

𝒕 (𝐝𝐚𝐲𝐬)

𝑫
(𝒕
)

𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬)

Colombia Belgium Hubei, China England(i) (j) (k) (l)

𝒕 (𝐝𝐚𝐲𝐬)

𝑰(
𝒕)

𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬) 𝒕 (𝐝𝐚𝐲𝐬)

(m) (n) (o) (p)𝜷 = 𝟏. 𝟑 𝜷 = 𝟏. 𝟑 𝜷 = 𝟏. 𝟎𝟓𝜷 = 𝟏. 𝟒

FIG. 8: Analysis of the empirical spreading dynamics. We tracked the mortality in 14 different
countries, 8 shown here (grey circles), and 6 in Fig. 2 of the main text. Extracting the exponential slope
(blue solid lines) we evaluated the infection rate β. This allowed us to predict I(t) in each country, and
match with the empirical data (orange circles).
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FIG. 9: The variability of infection rates among countries. Histogram of the estimator β̂ values by
countries
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